572 research outputs found

    Species trees from consensus single nucleotide polymorphism (SNP) data: Testing phylogenetic approaches with simulated and empirical data

    Get PDF
    Datasets of hundreds or thousands of SNPs (Single Nucleotide Polymorphisms) from multiple individuals per species are increasingly used to study population structure, species delimitation and shallow phylogenetics. The principal software tool to infer species or population trees from SNP data is currently the BEAST template SNAPP which uses a Bayesian coalescent analysis. However, it is computationally extremely demanding and tolerates only small amounts of missing data. We used simulated and empirical SNPs from plants (Australian Craspedia, Asteraceae, and Pelargonium, Geraniaceae) to compare species trees produced (1) by SNAPP, (2) using SVD quartets, and (3) using Bayesian and parsimony analysis with several different approaches to summarising data from multiple samples into one set of traits per species. Our aims were to explore the impact of tree topology and missing data on the results, and to test which data summarising and analyses approaches would best approximate the results obtained from SNAPP for empirical data. SVD quartets retrieved the correct topology from simulated data, as did SNAPP except in the case of a very unbalanced phylogeny. Both methods failed to retrieve the correct topology when large amounts of data were missing. Bayesian analysis of species level summary data scoring the two alleles of each SNP as independent characters and parsimony analysis of data scoring each SNP as one character produced trees with branch length distributions closest to the true trees on which SNPs were simulated. For empirical data, Bayesian inference and Dollo parsimony analysis of data scored allele-wise produced phylogenies most congruent with the results of SNAPP. In the case of study groups divergent enough for missing data to be phylogenetically informative (because of additional mutations preventing amplification of genomic fragments or bioinformatic establishment of homology), scoring of SNP data as a presence/absence matrix irrespective of allele content might be an additional option. As this depends on sampling across species being reasonably even and a random distribution of non-informative instances of missing data, however, further exploration of this approach is needed. Properly chosen data summary approaches to inferring species trees from SNP data may represent a potential alternative to currently available individual-level coalescent analyses especially for quick data exploration and when dealing with computationally demanding or patchy datasets.This study was partly supported by a Centre of Biodiversity Analysis Ignition Grant to A.N.S.-L. and Justin Borevitz in 2013/14

    Structural thermal stability of graphene oxide-doped copper-cobalt oxide coatings as a solar selective surface

    Get PDF
    3d transition metal oxides based thin film coatings such as copper-cobalt oxides exhibit high absorption in the visible region and low emittance in the infra-red to far-infra-red region of the solar spectrum which is favourable for use as potential selective surface materials in photothermal devices. These materials have the potential to minimize heating while increasing absorption in the operative spectrum range and therefore achieve higher solar selectivity. A series of mixed copper-cobalt metal spinel oxides (CuxCoyOz) doped with graphene oxide thin films were deposited on commercial grade aluminium substrates using a sol–gel dip-coating technique at an annealing temperature of 500 °C in air for 1 h. Characterizations of the synthesized films were carried out by high temperature synchrotron radiation X-ray Diffraction (SR-XRD), UV-Vis, Fourier Transform infrared spectroscopy (FTIR) and X-ray photoelectron microscopy (XPS) techniques. High thermal stability of coatings with multiple phases, binary and ternary metal oxides, was defined through SR-XRD study. FTIR analysis shows moderate (<80%) to high (up to 99%) reflectance in the infra-red region while the UV-Vis investigations demonstrate that, in the visible region, solar absorption increases gradually (up to 95%) with the addition of graphene oxide to the CuxCoyOz coatings. With the incorporation of 1.5 wt% of graphene oxide to the copper-cobalt oxide coatings, a high solar selectivity of 29.01 (the ratio of the average solar absorptance in visible and the average thermal emittance in infra-red to far infra-red region; α/ε) was achieved

    Transplantation of canine olfactory ensheathing cells producing chondroitinase ABC promotes chondroitin sulphate proteoglycan digestion and axonal sprouting following spinal cord injury

    Get PDF
    Olfactory ensheathing cell (OEC) transplantation is a promising strategy for treating spinal cord injury (SCI), as has been demonstrated in experimental SCI models and naturally occurring SCI in dogs. However, the presence of chondroitin sulphate proteoglycans within the extracellular matrix of the glial scar can inhibit efficient axonal repair and limit the therapeutic potential of OECs. Here we have used lentiviral vectors to genetically modify canine OECs to continuously deliver mammalian chondroitinase ABC at the lesion site in order to degrade the inhibitory chondroitin sulphate proteoglycans in a rodent model of spinal cord injury. We demonstrate that these chondroitinase producing canine OECs survived at 4 weeks following transplantation into the spinal cord lesion and effectively digested chondroitin sulphate proteoglycans at the site of injury. There was evidence of sprouting within the corticospinal tract rostral to the lesion and an increase in the number of corticospinal axons caudal to the lesion, suggestive of axonal regeneration. Our results indicate that delivery of the chondroitinase enzyme can be achieved with the genetically modified OECs to increase axon growth following SCI. The combination of these two promising approaches is a potential strategy for promoting neural regeneration following SCI in veterinary practice and human patients

    A high-precision rf trap with minimized micromotion for an In+ multiple-ion clock

    Full text link
    We present an experiment to characterize our new linear ion trap designed for the operation of a many-ion optical clock using 115-In^+ as clock ions. For the characterization of the trap as well as the sympathetic cooling of the clock ions we use 172-Yb^+. The trap design has been derived from finite element method (FEM) calculations and a first prototype based on glass-reinforced thermoset laminates was built. This paper details on the trap manufacturing process and micromotion measurement. Excess micromotion is measured using photon-correlation spectroscopy with a resolution of 1.1nm in motional amplitude, and residual axial rf fields in this trap are compared to FEM calculations. With this method, we demonstrate a sensitivity to systematic clock shifts due to excess micromotion of |({\Delta}{\nu}/{\nu})| = 8.5x10^-20. Based on the measurement of axial rf fields of our trap, we estimate a number of twelve ions that can be stored per trapping segment and used as an optical frequency standard with a fractional inaccuracy of \leq 1x10^-18 due to micromotion.Comment: 19 pages with 14 picture

    Combination antiretroviral therapy and the risk of myocardial infarction

    Get PDF

    An Integrated TCGA Pan-Cancer Clinical Data Resource to Drive High-Quality Survival Outcome Analytics

    Get PDF
    For a decade, The Cancer Genome Atlas (TCGA) program collected clinicopathologic annotation data along with multi-platform molecular profiles of more than 11,000 human tumors across 33 different cancer types. TCGA clinical data contain key features representing the democratized nature of the data collection process. To ensure proper use of this large clinical dataset associated with genomic features, we developed a standardized dataset named the TCGA Pan-Cancer Clinical Data Resource (TCGA-CDR), which includes four major clinical outcome endpoints. In addition to detailing major challenges and statistical limitations encountered during the effort of integrating the acquired clinical data, we present a summary that includes endpoint usage recommendations for each cancer type. These TCGA-CDR findings appear to be consistent with cancer genomics studies independent of the TCGA effort and provide opportunities for investigating cancer biology using clinical correlates at an unprecedented scale. Analysis of clinicopathologic annotations for over 11,000 cancer patients in the TCGA program leads to the generation of TCGA Clinical Data Resource, which provides recommendations of clinical outcome endpoint usage for 33 cancer types

    Mudanças nos compostos bioativos e atividade antioxidante de pimentas da região amazônica.

    Get PDF
    A Embrapa Amazônia Oriental possui um Banco Ativo de Pimenteira com diferentes genótipos do gênero Capsicum, os quais ainda não foram analisados, quanto às suas características funcionais e capacidade antioxidante. Este estudo objetivou determinar os teores de ácido ascórbico, compostos fenólicos, carotenoides totais e a atividade antioxidante total, em frutos imaturos e maduros de genótipos de pimentas Capsicum spp. As concentrações de vitamina C (100,76-361,65 mg 100 g-1 nos frutos imaturos e 36,70-157,76 mg 100 g-1 nos maduros) decresceram com a maturação dos frutos. Carotenoides totais não foram detectados nos frutos imaturos, porém, nos frutos maduros, observaram-se valores de 73,80-1349,97 mg g-1, em função do genótipo. Os teores de compostos fenólicos aumentaram nos frutos maduros (147,40-718,64 mg GAE 100 g-1), para oito dos nove genótipos avaliados. Os frutos de pimenteira apresentaram significativa atividade antioxidante (55,02-92,03 mM trolox g-1 nos frutos imaturos e 39,60-113,08 mM trolox g- 1 nos maduros). Concluiu-se que o grau de maturação dos frutos influenciou nos teores de compostos bioativos dos genótipos estudados. Destacaram-se, como genótipos promissores com potencial para serem utilizados em programas de melhoramento genético, IAN-186301 e IAN-186324, pelos altos teores de carotenoides totais; IAN-186301, IAN-186311, IAN-186312 e IAN-186313, com relação às altas concentrações de ácido ascórbico; IAN-186304 e IAN-186311, pelos altos teores de compostos fenólicos; e IAN-186311, para atividade antioxidante
    corecore